11 research outputs found

    An Effective Ultrasound Video Communication System Using Despeckle Filtering and HEVC

    Get PDF
    The recent emergence of the high-efficiency video coding (HEVC) standard promises to deliver significant bitrate savings over current and prior video compression standards, while also supporting higher resolutions that can meet the clinical acquisition spatiotemporal settings. The effective application of HEVC to medical ultrasound necessitates a careful evaluation of strict clinical criteria that guarantee that clinical quality will not be sacrificed in the compression process. Furthermore, the potential use of despeckle filtering prior to compression provides for the possibility of significant additional bitrate savings that have not been previously considered. This paper provides a thorough comparison of the use of MPEG-2, H.263, MPEG-4, H.264/AVC, and HEVC for compressing atherosclerotic plaque ultrasound videos. For the comparisons, we use both subjective and objective criteria based on plaque structure and motion. For comparable clinical video quality, experimental evaluation on ten videos demonstrates that HEVC reduces bitrate requirements by as much as 33.2% compared to H.264/AVC and up to 71% compared to MPEG-2. The use of despeckle filtering prior to compression is also investigated as a method that can reduce bitrate requirements through the removal of higher frequency components without sacrificing clinical quality. Based on the use of three despeckle filtering methods with both H.264/AVC and HEVC, we find that prior filtering can yield additional significant bitrate savings. The best performing despeckle filter (DsFlsmv) achieves bitrate savings of 43.6% and 39.2% compared to standard nonfiltered HEVC and H.264/AVC encoding, respectively

    Color Based Texture - Classification of Hysteroscopy Images of the Endometrium

    No full text

    Texture-based classification of hysteroscopy images of the endometrium

    No full text

    Wireless Ultrasound Video Transmission for Stroke Risk Assessment: Quality Metrics and System Design

    Get PDF
    In this paper we discuss the use of clinical quality criteria in the assessment and design of ultrasound video compression systems. Our goal is to design efficient systems that can be used to transmit quality ultrasound videos at the lowest possible bitrates. This led us to the development of a spatially- varying encoding scheme, where quantization levels are spatially varying as a function of the diagnostic significance of the video. Diagnostic Regions of Interest (ROIs) for carotid ultrasound medical video are defined, which are then used as input for Flexible Macroblock Ordering (FMO) slice encoding. Diagnostically relevant FMO slice encoding is attained by enabling variable quality slice encoding, tightly coupled by each region's diagnostic importance. Redundant Slices (RS) utilization increases compressed video's resilience over error prone transmission mediums. We present preliminary findings on three carotid ultrasound videos at CIF resolution, for packet loss rates up to 30%. Subjective quality evaluation incorporates a clinical rating system that provides for independent evaluations of the different parts of the video. Experimental results show that encoded videos attain enhanced diagnostic performance under noisy environments, while at the same time achieving significant bandwidth requirements reductions

    Texture analysis of the endometrium during hysteroscopy: Preliminary results

    No full text

    Preparing to Use the Teachers Empowered to Advance Change in Mathematics Modules: Considerations for Mathematics Teacher Educators

    No full text
    This chapter highlights decisions mathematics teacher educators might make as they prepare to use the Teachers Empowered to Advance Change in Mathematics (TEACH Math) modules in their own courses. These modules are designed to support prospective teachers in integrating a focus on children’s mathematical thinking and their community and family-based knowledge in their mathematics instruction. Considerations for mathematics teacher educators include how to start integrating the modules into an existing course, suggestions for connecting to big ideas in mathematics education, and potential context adaptations. Expected tensions are also presented and discussed
    corecore